Framework : Eukaryogenesis and Evolution

I Eukaryogenesis

The time of origin of the Last Eukaryotic Common Ancestor is controversial. One late origin of the extant eukaryotic diversity suggests LECA arose 1.4-1.2 Gya. However, sterol biomarkers, a red algae fossil, and acritarch fossils suggest an arrival earlier than 1.45 Gya. This discrepancy can be explained if < 1.45 Gya Acritarchs are pre-LECA organisms or extinct prokaryotes. Therefore, Acritarchs may provide clues to past extinction events and eukaryogenesis.

The existence of multiple primary, secondary, tertiary, and quartenary symbioses creates a complicated scenario of evolution via infectious speciation events. Understanding the primary symbiotic events is necessary for the elucidation of the subsequent heirarchial processes.

My working model of eukaryocyte evolution incorporates symbioses and DNA transposons as differentiation factors resposible for the diversification of eukaryotic kingdoms. An historical perspective that separates the growth of the bush of life into Primary, Secondary, Tertiary, and Quartenary Symbiotic Periods may simplify the understanding of the maize like pathways of evolution.

I. Primary Prokaryote Symbiosis Period : Evolution of LECA, Amorphea, and Diaphoretickes

II. Secondary Eukaryote + Eukaryote Symbiosis Period : Evolution of Euglenozoa and SAR

III. Tertiary Eukaryote Symbiosis Period

IV. Quartenary Eukaryote Symbiosis Period

V. Metazoan Evolution involving transfers of embedded Transposable Elements . ( ie.; birds flying with attached snails containing parasites with transposon containing viruses. Or, flying insects with parasites and transposon containing viruses that influence distant speciation events ) Combinations of DNA Transposons are responsible radiation events in Eukaryotes. A history of these elements helps elucidate major mechanisms of eurkaryotic macroevolution.

Eukaryote Classes

Amorphea

Opisthokonta

 

Metazoa

Choanomonada

Fungi

Amoebozoa

 

Tubulinea

Mycetozoa

 

 

Apusomonada

 

 

Breviata
Excavata

Malawinomas

Metamonada

Discoba

Diaphoretickes

CCTH

 

 

Cryptophyceae

Centrohelida

Telonemia

Haptophyta

SAR

Cercoza

Foraminifera

Radiolaria

Alveolata

Stamenopiles

Archaeplastids

Glaucophyta

Rhodophyceae

Chloroplastida

 

Nonclassified Groups and Genera - Somewhere in this list lurks the vestigial form of the last eukaryotic common ancestor. Currently LECA appears to be an close ancestor of both Collodictyon and Breviata. The ameboid species are particularly difficult to classify because they could be amoebazoa, fungi, spermatia, heterolobosea, trimetia, apicomplexa or yet to be classified orders.

Actinastrum-(plantae-chlorophyta or amoeba)
Actinocoma -(amoebozoa)
Adinomonas -(algae)
Aletium -(Amoeba) associates with green algae
Amphimonas biflagellated
Amylophagus (Amoeba)
Aphelidiopsis ( parasitic protist)
Archaeosphaerodiniopsis (dinoflagellate)
Artodiscus (gromiidae)
Asterocaelum (Amoeba)
Asthmatos cilioflagellate causes hayfever
Aurospora (microsporidian/algae )
Barbetia (parasitic protist)
Belaria
Bertarellia (parasitic protist)
Bertramia (parasitic protist)
Bjornbergiella
Bodopsis
Boekelovia
Branchipocola
Camptoptyche
Chalarodora
Chamydophrys (Amoeba)
Cibdelia (parasitic protist)
Cichkovia (Amoeba)
Cinetidomyxa (Amoeba)
Cingula (parasitic protist)
Cladomonas
Codonoeca
Coelosporidium (parasitic protist)
Copromonas
Cyanomastix
Cyclomonas
Cystamoeba/Cytamoeba (Amoeba)(parasitic protist)
Dallingeria
Dictyomyxa (Amoeba)
Dimastigamoeba
Dimorphids
Dinemula (parasitic protist)
Dinoasteromonas
Diplocalium
Diplomita
Diplophysalis (parasitic protist)
Diploselmis
Dobellia
Dobellina (Amoeba)
Ducelleria (parasitic protist)
Ectobiella (parasitic protist)
Elaeorhanis (Amoeba)
Embryocola (parasitic protist)
Endamoeba (Amoeba)
Endemosarca (parasitic protist)
Endobiella (parasitic protist)
Endomonas (parasitic protist)
Endospora (parasitic protist)
Enteromyxa (Amoeba)
Eperythrocytozoon (parasitic protist)
Errera
Fromentella
Gymnococcus (Amoeba)
Gymnophrydium (Amoeba)
Haematotractidium (parasitic protist)
Hartmannina (Amoeba)
Heliobodo
Heliomonas
Hermisenella
Heterogromia (Amoeba) ? Kibisidytes
Hillea
Hyalodaktylethra (Amoeba)
Immnoplasma (parasitic protist)
Isoselmis
Janickina (Amoeba)
Joyeuxella

Kamera
Kiitoksia
Komokiacea
Lagenidiopsids
Liegeosia /Liegeoisia (Amoeba) ? related to Pansporella
Lithocolla (Amoeba)
Lu?sphaera
Lymphocytozoon (parasitic protist)
Lymphosporidium (parasitic protist)
Macappella
Magosphaera
Malpighiella
Martineziella (Amoeba)
Megamoebomyxa (Amoeba)
Meringosphaera
Microcometes
Microgromia (Amoeba) similar to Leucodictyon
Monochrysis
Monodus
Mononema
Myrmicisporidium (parasitic protist)
Naupliicola (parasitic protist)
Nephrodinium
Neurosporidium (parasitic protist)
Ovicola (parasitic protist)
Palisporomonas (parasitic protist)

Paplitomonas


Paradinemula (parasitic protist)
Paramastix
Paramonas
Paraplasma (parasitic protist)
Parastasia (parasitic protist)
Parastasiella (parasitic protist)
Peliainia
Peltomonas ? Peltomyces (parasitic protist)
Petasaria
Phagodinium
Phanerobia
Phloxamoeba
Phyllomitus
Phyllomonas
Physcosporidium (parasitic protist)
Piridium (parasitic protist)
Pleuophrys
Pleuromastix
Protenterospora
Protomonas (Amoeba)
Pseudoactiniscus
Pseudosporopsis (parasitic protist)
Quadricilia
Rhizomonas
Rhynchodinium
Rigidomastix
Schewiakoza
Sergentella (parasitic protist)
Serpentoplasma (parasitic protist)
Sphaerasuctans (parasitic protist)
Spiriopsis (parasitic protist)
Spirogregarian (parasitic protist)
Spongastericus
Spongocyclia
Stephanomonas
Strobilomonas
Tetragonidium
Thalssomyxa (Amoeba)
Thaulirens
Topsentella (Amoeba)
Toshiba
Toxocystis (parasitic protist)

Tsukubamonas globosa (discoba related flagellate)
Trichonema
Urbanella (Amoeba)

Other uncharacterized amoeba

Apogromia
Belonocystis
Biomyxa
Branchipocola
Gromia
Iodamoeba
Kibisidytes
Lagenidiopsis
Leptophrys
Leukarachnion
Ministeria
Myxodictyum
Penardia
Pontomyxa
Protogenes
Protomyxa
Raphidiophryopsis
Reticulamoeba
Rhabdamoeba
Rhizoplasma
Stygamoeba
Synamoeba
Theratromyxa
 

Evolutionary position of breviate amoebae and the primary eukaryote divergence Marianne A. Minge,, Jeffrey D. Silberm, Russell J. S. Orr, Thomas Cavalier-Smith ,Kamran Shalchian-Tabrizi ,Fabien Burki , Asmund Skjæveland and Kjetill S. Jakobsen\

Geomicrobiology, Fifth EditionBy Henry Lutz Ehrlich, Dianne K. Newman

Prehistoric Life: Evolution and the Fossil Record Bruce S. Lieberman (University of Kansas), Roger L. Kaesler (University of Kansas) March 2010, ©2010, Wiley-Blackwell

Appl Environ Microbiol. 2006 October; 72(10): 6638–6643.
doi: 10.1128/AEM.02547-05 Molecular Comparisons of Freshwater and Marine Isolates of the Same Morphospecies of Heterotrophic Flagellates

Frank Scheckenbach,1 Claudia Wylezich,1 Alexander P. Mylnikov,2 Markus Weitere,1 and Hartmut Arndt1,*

Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree Thomas Cavalier-Smith*

Reconstructing a complex early Neoproterozoic eukaryote, Wynniatt Formation, arctic Canada NICHOLAS BUTTERFIELD


Qianqian Zhang, Alastair Simpson and Weibo Song multigene analyses haptorian ciliates (Ciliophora, Litostomatea) based on

Mitochondrial Genome of the Homoscleromorph Oscarella carmela (Porifera, Demospongiae) Reveals Unexpected Complexity in the Common Ancestor of Sponges and Other Animals Xiujuan Wang and Dennis V. Lavrov Department of Ecology, Evolution and Organismal Biology, Iowa State University

Oldest Animal Discovered—Earliest Ancestor of Us All?

The real ‘kingdoms’ of eukaryotes Alastair G.B. Simpson1, , Andrew J. Roger2,

 

updated on 12/15/2012 ©1994-2012 Foster P. Carr MD all rights reserved